Cosmic Microwave Background and CMB-S4

CMB-S4: a coherent project building on CMB stage II & III projects including participation by:

the ACT, BICEP/KECK, SPT and Polarbear CMB teams; Argonne, FNAL, LBNL and SLAC national labs; and the HEP community.

John Carlstrom for the CF5 Inflation and Neutrino topical groups and the CMB-S4 collaboration

Early universe as a HEP lab

Inflation?

Universe expands by >e⁶⁰ solving smoothness problem, flatness and more..

What drove inflation?
What is the energy scale of inflation?

- spectral index of fluctuations, n_s
- constrain tensor to scalar fluctuations
- inflationary gravitational wave B-mode polarization
- non-Gaussianity?

Neutrinos?

Afterglow Light

Dark Energy

Accelerated Expansion

Neutrinos?

Σm_{ν}

Sum of the neutrino masses impacts growth of large scale structure, i.e., the matter power spectrum Probed by CMB lensing

Neutrinos?

$\Sigma m_{v} > 0$

Sum of the neutrino masses impacts growth of large scale structure, i.e., the matter power spectrum Probed by CMB lensing

WMAP

~70 deg²

Planck 143 GHz

~70 deg²

Ground based 150 GHz (SPTpol)

~70 deg²

13x higher resolution and 60x deeper than WMAP 7x higher resolution and 9x deeper than Planck

Ground based 150 GHz (SPTpol)

~70 deg²

CMB-S4 will be 5x deeper and cover 50x more sky than SPTpol survey

Primary CMB anisotropy - 9 harmonics

Inflation checks: Geometrically flat universe; Superhorizon features; Acoustic peaks/adiabatic fluctuations; Departure from scale invariance.

Constraining inflationary models joint r and n_s limits

Spectral Index of primordial fluctuations, n_s, where $\Delta_R^2(k) = \Delta_R^2(k_0) \left(\frac{k}{k_0}\right)^{n_s-1}$

Inflation evidence $n_s \neq 1$ at over 5σ

Constraining inflationary models joint r and n_s limits

Spectral Index of primordial fluctuations, n_s, where $\Delta_R^2(k) = \Delta_R^2(k_0) \left(\frac{k}{k_0}\right)^{n_s-1}$

Inflation evidence $n_s \neq 1$ at over 5σ

Primary CMB anisotropy - 9 harmonics

Improves precision of sound horizon, θ_s , & provides larger lever arm

And most importantly provides determination of the damping scale, θ_d

Note $\frac{r_d}{r_s} = \frac{\theta_d}{\theta_s} \propto H^{0.5}$, so ratio is sensitive to energy density.

Constraining model extensions: joint N_{eff} and Σm_v constraints

 $N_{\rm eff}$ is the effective number of relativistic species. For standard 3 neutrinos $N_{\rm eff}$ =3.046. It measures the extra energy relative to the photons.

Constraining model extensions: joint N_{eff} and Σm_v constraints

 $N_{\rm eff}$ is the effective number of relativistic species. For standard 3 neutrinos $N_{\rm eff}$ =3.046. It measures the extra energy relative to the photons.

Constraining model extensions: joint N_{eff} and Σm_v constraints

 $N_{\rm eff}$ is the effective number of relativistic species. For standard 3 neutrinos $N_{\rm eff}$ =3.046. It measures the extra energy relative to the photons.

Lensing of the CMB

17°x17°

lensing potential

unlensed cmb

from Alex van Engelen

Lensing of the CMB

17°x17°

from Alex van Engelen

We can take a CMB map

and construct the CMB Lensing map

reconstruction of the mass projected along the line of sight to the CMB.

Lensing convergence map smoothed to 1 deg resolution

and construct the CMB Lensing map

reconstruction of the mass projected along the line of sight to the CMB.

CMB lensing power spectrum

Sensitive to the neutrino masses $\sum m_v = 0.1 \text{ eV} \rightarrow 5\%$ amplitude of spectrum

Polarization gives additional lensing sensitivity and is a cleaner probe.

CMB lensing power spectrum

Sensitive to the neutrino masses $\sum m_v = 0.1 \text{ eV} \rightarrow 5\%$ amplitude of spectrum

Polarization gives additional lensing sensitivity and is a cleaner probe.

CMB lensing and optical surveys

CMB lensing complements large optical surveys such as DES, eBOSS, LSST, DESI, Euclid, WFIRST, etc.

The combination leads to better shear-bias calibration and more robust constraints on Dark Energy and the properties of neutrinos.

→ Critical for CMB-S4 sky coverage to overlap optical surveys.

From "Can CMB Lensing Help Cosmic Shear Surveys?" Das, Errard, and Spergel, 2013

Figure from CF5 inflation doc: note expanded scale with 0.001 < r < 0.01

Status of B-mode experiments

SPTpol Detection of lensing B-modes

CMB timeline

- 2009: r < 0.7 (BICEP) Chiang et al, 0906.1181
- 2013: Stage II experiments detect lensing B-modes
- 2014: r ≤ 0.1 from Inflationary B-modes (BICEP 2)?
- 2013-2016: Stage II experiments $\sigma(r)\sim0.03$, $\sigma(N_{eff})\sim0.1$, $\sigma(\Sigma m_v)\sim0.1eV$
- 2016-2020: Stage III experiments $\sigma(r)\sim0.01$, $\sigma(N_{eff})\sim0.06$, $\sigma(\Sigma m_v)\sim0.06$ eV;
- 2020-2025: Stage IV experiment, CMB-S4 $\sigma(r) = 0.001$, $\sigma(N_{eff}) = 0.020$, $\sigma(\Sigma m_v) = 16$ meV

CMB timeline

- 2009: r < 0.7 (BICEP) Chiang et al, 0906.1181
- 2013: Stage II experiments detect lensing B-modes
- 2014: r ≤ 0.1 from Inflationary B-modes (BICEP 2)?
- 2013-2016: Stage II experiments $\sigma(r)\sim0.03$, $\sigma(N_{eff})\sim0.1$, $\sigma(\Sigma m_v)\sim0.1eV$
- 2016-2020: Stage III experiments $\sigma(r)\sim0.01$, $\sigma(N_{eff})\sim0.06$, $\sigma(\Sigma m_v)\sim0.06$ eV;
- 2020-2025: Stage IV experiment, CMB-S4 $\sigma(r) = 0.001$, $\sigma(N_{eff}) = 0.020$, $\sigma(\Sigma m_v) = 16$ meV

CMB-S4 What it will deliver

Inflation projection for CMB-S4

CMB-S4 What it will deliver

 $\sigma(\Sigma m_v) = 16 \text{ meV}$ with two probes!

 $\sigma(N_{eff}) = 0.020$ unique to CMB

Our forecasters: J. Errard, P. McDonald, A. Slosar K. Wu, O. Zahn

CMB-S4 What it will take

CMB-S4 Survey:

- Maximum return on Inflation, Neutrino, and Dark Energy science requires an optimized survey which includes a range of resolution and sky coverage from deep to wide.

Sensitivity of ~1 uK-arcmin over half the sky

Experimental Configuration:

- 200,000+ detectors on multiple platforms
- spanning 40 240 GHz for foreground removal
- ≤ 3 arcmin resolution required for CMB lensing & neutrino science, (higher resolution leads to amazing and complementary dark energy constraints and gravity tests on large scales via the SZ effect)

- Build on extensive experience from earlier generation CMB experience
 - People
 - Technology
 - Systematic Error Control
 - Analysis
- And increase throughput by over an order of magnitude

- Build on extensive experience from earlier generation CMB experience
 - People
 - Technology
 - Systematic Error Control
 - Analysis
- And increase throughput by over an order of magnitude

<u>Technical challenge</u>: is the scaling of the CMB detector arrays.

Sociological evolution:

the highly competitive CMB groups are working together.

- Exploit superb, established sites at Atacama Chile and South Pole
 - proven high and dry sites for sensitive CMB measurements
 - provides the required access to > 50% of the sky,
 including coverage of the optical survey fields

CMB S4 Large Area Survey Region

(overlap with LSST, MS-DESI, etc)

Build on investment by NSF in Chilean mid-Latitude Facilities and CMB experiments

5200 meter (17,000 ft) site developed by the ACT team since 1998 provides access to over 50% of the sky

- The Atacama Cosmology Telescope
 - 6 meter aperture (1.4 arcmin at 150 GHz)
- Polarbear Telescope
 - 3.5 meter (3.5 arcmin at 150 GHz)

\$15M+ in Telescopes and Logistics

- Power, internet, workspace, roads
- Machine shop and supplies
- Low altitude control room and housing
- Ties to Chilean contractors and suppliers
- Legal presence in Chile
- Established positive working relationship with CONICYT (Chilean NSF)

Build on investment by NSF in South Pole Facilities and CMB experiments

- Major NSF research station (not shown) with excellent logistical support
- CMB measurements since the 1980s;
 Martin A. Pomerantz observatory established in 1994.
- Exceptionally low atmospheric noise (sky-noise) due to dry and stable atmosphere.
- Access to ~4000 square degrees of low foreground sky (10%), which is observable year-round, 24 hrs/day

75mm Wafers

2012: SPTpol Stage II 1600 detectors (ANL/NIST)

ANL, LBNL, SLAC, Polarbear and SPT teams working on Stage II to Stage III detector advance based on UCB 3-band, dual polarization pixel; ACT team also working on multichroic pixel.

- Optimized with background limited noise and high throughput
- Uniform properties over 150-mm diameter wafers
- Consistent fabrication from batch-to-batch

mm

2016: SPT-3G Stage III 4x larger area 15,234 detectors at T = 250mK

Stage-3 ~15,200 detectors

Stage-4

2020+: CMB-S4 200,000+ detectors multiple telescopes

Detector sensitivity has been limited by photon "shot" noise for last ~15 years; further improvements are made only by making *more detectors.*

→ CMB-S4 requirements exceed capabilities of the traditional University-based CMB groups

- Increased production scope and reliability
 - —200,000+ detectors requires production of approximately 150 silicon 6" detector arrays
- Multiplexed TES Readout
- Large Cryogenic Optics
- Computing Infrastructure and Analysis tools
 - -~10,000 x *Planck* data size (~ 6 TB/day)
- Project Organization/Management
- → requires DOE National lab and HEP community working with the University-based CMB groups

- Investment in robust, large scale detector fabrication.
- Involvement with SPTpol Stage II experiment (provided 90 GHz channel).
- Involvement in SPT-3G Stage III, providing detectors.

- Detector testing, SiDet for module assembly, and radiometer cryostat design, testing and integration.
- Experience with QUIET detector module testing and assembly.

- Investment in multiplexer readout.
- CMB heritage and connections with UCB detector development.
- High performance computing/ massively parallel data analysis.
- Involvement in Polarbear and SPT (Stage II & III).

- Investment in developing large aperture cryogenic optics.
- Investing in robust, large scale detector fabrication
- Investment in SQuIDs.
- Involvement in BICEP / KECK, SPT and ACT Stage III, providing detectors.

NOTIONAL BUDGET		FY15	FY16	FY17	FY18	FY19	FY20	
DOE ANL/LBNL/SLAC Detector	project capital \$*	0.5M	IM	1.5M	I.5M	1.5M	I.5M	
	FTE [†]	5	7	10	14	16	16	
DOE (LBNL/NERSC) Computing	project capital \$	-	-	1	ı	I	0.5M	
	FTE	-	Ι	2	2	3	3	
DOE Receiver test facilities, hardware & electronics	project capital \$	-	3M	4.5M	7.5M	7.5M	7.5M	
	FTE	4	8	10	12	12	12	
NSF University CMB Dev, Test, Ops and Analysis	Σ\$	(7M) current	7M	7M	7M	8M	9M	
new telescopes (NSF) site/deploy (NSF/DOE)	project capital \$	-	2M	7M	7M	7M	7M	
NSF & DOE new telescope operations	\$	-	0.5M	2M	3M	4M	5M	
DOE Lab & Univ Analysis (converts)	FTE	6	10	16	24	30	30	
*2013 dollars †DOE Particle Ph								

NOTIONAL BUDGET		FY15	FY16	FY17	FY18	FY19	FY20	Capital \$+FTEyr
DOE ANL/LBNL/SLAC Detector	project capital \$	0.5M	IM	I.5M	I.5M	I.5M	I.5M	7.5M
	FTE	5	7	10	14	16	16	68 yr
DOE (LBNL/NERSC) Computing	project capital \$	-	-	-	ı	ı	0.5M	0.5M
	FTE	-	_	2	2	3	3	II yr
DOE Receiver test facilities, hardware & electronics	project capital \$	-	3M	4.5M	7.5M	7.5M	7.5M	31M
	FTE	4	8	10	12	12	12	58 yr
NSF University CMB Dev, Test, Ops and Analysis	Σ\$	(7M) current	7M	7M	7M	8M	9M	
†new telescopes (NSF) site/deploy (NSF/DOE)	project capital \$	-	2M	7M	7M	7M	7M	30M
NSF & DOE new telescope operations	\$	-	0.5M	2M	3M	4M	5M	
DOE Lab & Univ Analysis (converts)	FTE	6	10	16	24	30	30	
†Roughly 2:1 ratio of cost of to to costs of site prep and dep	Total Project Capital: \$69M and 137 FTE • yr (not including 25% contingency)							

NOTIONAL BUDGET		FY15	FY16	FY17	FY18	FY19	FY20	Ops/yr Analysis/yr
DOE ANL/LBNL/SLAC Detector	project capital \$	0.5M	IM	1.5M	I.5M	1.5M	I.5M	
	FTE	5	7	10	14	16	16	
DOE (LBNL/NERSC) Computing	project capital \$	-	-	-	-	-	0.5M	0.5M/ 3yr
	FTE	-	I	2	2	3	3	4 FTE
DOE Receiver test facilities, hardware & electronics	project capital \$	-	3M	4.5M	7.5M	7.5M	7.5M	
	FTE	4	8	10	12	12	12	
NSF University CMB Dev, Test, Ops and Analysis	Σ\$	(7M) current	7M	7M	7M	8M	9M	9M
new telescopes (NSF) site/deploy (NSF/DOE)	project capital \$	-	2M	7M	7M	7M	7M	
NSF & DOE new telescope operations	\$	-	0.5M	2M	3M	4M	5M	5M
DOE Lab & Univ Analysis (converts)	FTE	6	10	16	24	30	30	30+FTE
	2020+ yearly ops and analysis: \$14.2M and 34+ I					34+ FTE		

International competition / partners

- There is no competition at the scale of CMB-S4
 - European L-class mission (PRISM) was turned down
 - No NASA mission expected on this time scale
- International partners
 - We envision CMB-S4 as primarily a U.S. project
 - Current international partners contributing to the CMB teams, e.g.,
 - Cardiff with all
 - KEK, Japan with Polarbear
 - McGill U with Polarbear and SPT
 - CITA, Oxford, UBC with ACT
 - Chile is critical partner; ACT works with CONICYT (Chilean NSF)
 - plus many other international participants
 - We expect a lot of international interest if CMB-S4 goes forward.

What we hope P5 will endorse

- 1. CMB uniquely addresses fundamental and exciting HEP science.
- 2. DOE-HEP has critical role in current and future CMB experiments.
- 3. Continued NSF and DOE funding of the CMB groups is critical to advancing CMB science.
 - It is essential to include the expertise from established university CMB groups.
 - Best and most economical path to CMB-S4 is to build on existing CMB experiments & telescopes.
- 4. CMB-S4 technology is identified and significantly mature to push for large scale integration; CMB-S4 detector development could and should start ASAP.
- 5. CMB-S4 should exploit infrastructure investments in robust, large scale micro-fabrication at ANL and SLAC, and in detector development at LBNL. Two production facilities will be needed.
- 6. CMB-S4 program could be ready for project CD0 in 2015, with full deployment in 2020 and measurements continuing through 2024.
- 7. The CMB program and CMB-S4 is expected to continue to produce a steady flow of scientific results and new discoveries en route to achieving its primary goals.

Extra slides

Experimental Evolution

Combined Neutrino mass constraints

[&]quot;use cosmology to tighten the noose" Boris Kayser

CMB Sunyaev-Zel'dovich Cluster Survey

Cluster Mass vs Redshift from CMB SZ measurements

CMB measurements detect clusters through the "shadows" they make in the CMB, the Sunyaev-Zel'dovich (SZ) effect:

SPT-SZ/pol: $N_{\rm clust} \sim 1,000$

SPT-3G: $N_{\rm clust} \sim 10,000$

CMB-S4: $N_{\rm clust} \sim 100,000+$

CMB lensing measured from individual clusters, can directly calibrate cluster mass:

SPT-3G: $\sigma(M) \sim 3\%$

CMB-S4: $\sigma(M) < \sim 0.1\%$

CMB-S4 Lensing Sensitivity Σm_ν

setting limit to tensor perturbations i.e., primordial gravitational waves

$$r \equiv \frac{\text{Tensor (gravitational) perturbation amplitude}}{\text{Scalar (density) perturbation amplitude}} \quad V^{1/4} = 1.06 \times 10^{16} \mathrm{GeV} \left(\frac{\mathrm{r}}{0.01}\right)^{1/4}$$